
9/16/2008

1

Objects and Classes

Lecture 3

Object-Oriented Programming

Lecture 3 Object-Oriented Programming 2

Agenda
• Objects Introduction

• Capabilities of an Object

• Properties of an Object

• Object State

• Classes

• Object Classes

• Object Instances

• Objects in Memory

• Existing Classes and Objects

• String Object

• Reusing Existing Classes

• Constructor

• Third Party Classes

• Turtle World Examples

9/16/2008

2

Lecture 3 Object-Oriented Programming 3

What are Objects?
• Building blocks of a software

– A set of cooperating objects that work together by sending messages to
each other

• Object model tangible things

– school

– Car

• Objects model conceptual things

– meeting

– date

• Objects model processes

– finding a path through a maze

– sorting a deck of cards

Lecture 3 Object-Oriented Programming 4

What does an Object have?

• Objects have

– capabilities: what they can do, how they

behave

– properties: features that describe them

9/16/2008

3

Lecture 3 Object-Oriented Programming 5

Capabilities of an Object

• Objects have capabilities that allow them to

perform specific actions

- objects are smart—they “know” how to do

things

- an object gets something done only if some

other object tells it to use one of its capabilities

• Also called behaviours

Lecture 3 Object-Oriented Programming 6

Flavors of Capabilities

Capabilities can be:

- constructors: establish initial state of object’s

properties

- commands: change object’s properties

- queries: provide answers based on object’s

properties

9/16/2008

4

Lecture 3 Object-Oriented Programming 7

Example of Capabilities

• Example: trash cans are
capable of performing
specific actions

- constructor: be created

- commands: add trash,
empty yourself

- queries: reply whether
lid is open or closed, or
whether can is full or
empty

Lecture 3 Object-Oriented Programming 8

Properties of an Object

• Properties determine how an object acts

- some properties may be constant, others

variable

- properties themselves are objects — they also

can receive messages

- the jug’s lid and its contents are also objects

9/16/2008

5

Lecture 3 Object-Oriented Programming 9

Flavors of Properties

Properties can be:

- attributes: things that help describe an object

- components: things that are “part of” an object

- associations: things an object knows about, but

are not parts of that object

Lecture 3 Object-Oriented Programming 10

Object State

• State: collection of all of an object’s

properties; changes if any property changes

- some don’t change, e.g., steering wheel of car

- others do, e.g., car’s color

9/16/2008

6

Lecture 3 Object-Oriented Programming 11

Example of Properties

• Example: properties of jug

- attributes: color, material, smell

- components: lid, container

- associations: a jug can be associated with the room

it’s in

Lecture 3 Object-Oriented Programming 12

Classes

• Our current conception: each object corresponds

directly to a particular real-life object, e.g., a

specific atom or automobile

• Disadvantage: it’s much too impractical to work
with objects this way
– there may be infinitely many objects (i.e., modeling all

atoms in the universe)

– may not want to describe each individual separately;
they may have much in common

9/16/2008

7

Lecture 3 Object-Oriented Programming 13

Classes (cont’d)

• Classifying objects factors out commonality

among sets of similar objects

– describe what is common just once

– then “stamp out” any number of copies later

Rubber stamp
(object class)

Imprints

(object instances)

Lecture 3 Object-Oriented Programming 14

Object Classes

• Object class

– a class is a category of object

– defines capabilities and properties common

among a set of individual objects

• all trash cans can open, close, empty their trash

– defines template for making object instances

• particular trash cans may have a metal casing, be

blue, be a certain size, etc.

9/16/2008

8

Lecture 3 Object-Oriented Programming 15

Object Classes

• Classes implement capabilities as methods

– a method is a sequence of statements in Java

– objects cooperate by sending messages to others

– each message “invokes a method”
• i.e., Java executes the sequence of statements in the method in

response to a message

• Classes implement properties as instance variables

– slot of memory allocated to the object that can hold a
potentially changeable value

Lecture 3 Object-Oriented Programming 16

Object Instances

• Object instances are individual objects
– made from class template

– one class may represent any number of object instances

– creating an object instance is called instantiating that object

• Shorthand:
– class: object class

– instance: object instance (not to be confused with instance variable)

• Different instances of, say, TrashCan class may have:
– different color and position

– different types of trash inside

• So their instance variables have different values

9/16/2008

9

Lecture 3 Object-Oriented Programming 17

Object Classes

• Individual instances have individual

identities

– this allows other objects to send messages to

given object

– each instance is unique, even though they all

have the same capabilities

– think of class of 07CP students

Lecture 3 Object-Oriented Programming 18

Objects in Memory

• Every instance is stored in computer’s memory

– memory is a set of consecutively numbered storage locations, each
containing a byte

– each instance is stored in a series of contiguous bytes starting at a given
location

• An instance is identified and referenced by unique address that refers
to its starting location
– address looks like 0xeff8a9f4 (hexadecimal notation, base 16)

– just like postal address represents actual home

• But we know from our previous knowledge that the memory contents
are written in binary format.
– Hexadecimal numbers are commonly used for specifying memory

addresses because the are easily converted to binary (base 2) numbers and
they can be expressed in fewer digits than their decimal (base 10)
counterparts.

9/16/2008

10

Lecture 3 Object-Oriented Programming 19

Objects in Memory

memory address

of instance 1

memory address

of instance 2

memory address

of instance 3

0x00000000

0x00000001

0x00000002

0x00000080

(vertical

representation)

(horizontal representation of memory)

Lecture 3 Object-Oriented Programming 20

Using Existing Classes and Objects

• Java allows code reuse. In fact this is one of the

fundamental strength of Java

• Existing classes could be used by instantiating

them into objects instances

• For using existing objects the compiler must know

where they are located.

– In Java existing classes are packed into package

– Java compiler must know the location of the package to

use the existing classes

9/16/2008

11

Lecture 3 Object-Oriented Programming 21

String Object

• Remember the following Java syntax from
last time

String city = “Lahore”;

– Why the “S” in String is not in small caps like
int, double, etc.

– String is an existing Java class and it is used to
store values specified as strings.

– As a rule of thumb in Java anything specified in
double quotes “ ” is a String.

Lecture 3 Object-Oriented Programming 22

Reusing Existing Classes

• To use existing classes

– We must know which package to use.

– e.g. java.lang.String

– java.lang is the package and String is the class
being used from that package.

• Two types of reusable packages

– Packages that are available with the Java
compiler.

– Packages developed by third parties.

9/16/2008

12

Lecture 3 Object-Oriented Programming 23

Reusing Existing Classes (cont’d)

• Packages developed by third parties must be

included in the classpath of the Java

compiler.

• A classpath specifies the area on the

computer where the compiler should search

for the definition of the existing classes.

Lecture 3 Object-Oriented Programming 24

Syntax for Using Existing Classes

• Existing classes are instantiated into objects
by this syntax.

String city = new String()

Tells the compiler to search for the definition of a class named “String”

A unique name for the object in the memory

“new” keyword to reserve the space for the type String in the memory

String() is a constructor of the class “String”

1 2 3 4

1

2

3

4

9/16/2008

13

Lecture 3 Object-Oriented Programming 25

Constructor

• Constructor is a special method that is called

whenever a class is instantiated (created)

– another object sends a message that calls a constructor

– A constructor is the first message an object receives and

cannot be called subsequently

– establishes initial state of properties for instance

• Constructors have special syntax:

– must always have same name as class name

Lecture 3 Object-Oriented Programming 26

Constructors (cont’d)

• A class could have many constructors e.g.

String city = new String()

&

String city = new String(“Lahore”)

Both construct a String object but in the first no

initial value is given to the String and in the

second a value “Lahore” is given.

9/16/2008

14

Lecture 3 Object-Oriented Programming 27

Declaring a String

• Is there a difference between
String city = “Lahore”

&

String city = new String(“Lahore”)

• No - the first one is just a shorthand for the second one.

• This shorthand notation is only good for String objects,
no other objects could be instantiated like this. For all
the other objects one needs the second notation

Lecture 3 Object-Oriented Programming 28

Using Object Instances

• String is a class with capabilities and

properties.

– Properties are usually hidden from the outside

world.

– (Some) capabilities are exposed to the outside

world.

• Which String capability we have seen so

far?

9/16/2008

15

Lecture 3 Object-Oriented Programming 29

Using Third Party Classes

• Library of turtles that move around inside a virtual
world.

• The very first step to use this library/package is to
create a world

World worldObj = new World();

Creates a world object and allocate it a space in memory.

On Computer Demo

Lecture 3 Object-Oriented Programming 30

Turtle World

• In this world i.e. worldObj we would like to put

some turtles
Turtle turtle2 = new Turtle(30,50,worldObj);

Turtle(30,50,worldObj) is a constructor that

specifies three propeties for the turtle2.

30, 50 specifies the location of turtle2 in the worldObj.

Demo

9/16/2008

16

Lecture 3 Object-Oriented Programming 31

Using Turtle Capabilities

• The previous code performs the creation of the
world and places a turtle in it.

• Now we could use some capabilities of turtle2 to
perform some useful tasks.

• We will use the dot notation to invoke turtle2’s
capabilities.

• The dot notation will send a message to turtle to
perform a specific task.

– objectInstance . Message (paramterList)

Lecture 3 Object-Oriented Programming 32

Using Turtle Capabilities

• We would like turtle2 to move forward 20

units.

turtle2.forward(20);

9/16/2008

17

Lecture 3 Object-Oriented Programming 33

Using Turtle Capabilities

• We would like turtle2 to turn left.

– turtle2.turnLeft();

Lecture 3 Object-Oriented Programming 34

Readings

Book Name: Introduction to Computing and Programming in

Java A Multimedia Approach

Author: Mark Guzdial and Barbara Ericson

Content: Chapter 3

Book Name: Object Oriented Programming in Java – A
Graphical Approach

Author: Kathryn E. Sanders & Andries van Dam

Content: Pages 17-39

9/16/2008

18

Lecture 3 Object-Oriented Programming 35

Acknowledgements

• While preparing this course I have greatly

benefited from the material developed by the

following people:

– Andy Van Dam (Brown University)

– Mark Sheldon (Wellesley College)

– Robert Sedgewick and Kevin Wayne (Princeton

University)

– Mark Guzdial and Barbara Ericsson (Georgia Tech)

– Richard Halterman (Southern Adventist University)

Class Participation

• Q & A

Lecture 2 Object-Oriented Programming 36

